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Self-trapped hydrogen states in metals determined from 
quantum mechanical calculations using potentials based on 
ab initio data: I. Hydrogen isotopes in Pd 

H Krimmel, L Schimmele, C Elsisser and M F M e  
bstitut fir Physik, MaX-Planck-Institut fU MetallLrschung, Heise.nkrgsu& 1, 0-70569 
Stuttgm, Federal Republic of Germany 

Received 15 September 1993, in hal form 28 April 1994 

Abshact. Ab initio pseudopotential calculations for H in Pd are used in order to consmct an 
a u x i l i  short-ranged host-latti-panicle potential which well reproduces the large number of 
available ob initio daM. This patential (instead of an empirical potential as employed in previous 
treatments) is used in a quantum mechanical calculation of hydrogen as well as of M+ and II+ 
states in Pd, which takes into account the dependence of the lattice relamkion on particle mass 
and panicle state. These calculations allow us to determine Jahn-Teller coupling c o m t s  of 
excited states and the dependence of lattice displacements on the isotopic mass. It is found 
that mupling to lattice modes with Esymmetry is dominant. ?he effect of lattice relaxation on 
the total energy diffmnce if hydrogen is localized at tetrahedral or octahedral sites and on the 
excitation energies as measured by inelastic neuhOn scattering experiments is also discussed. 

1. Introduction 

The theoretical investigation of the behaviour of a light particle endowed with one positive 
elementary charge (p+, n+, p, d, t) in a metal is confronted with a complicated many-body 
problem. The constituents of this many-body system are the particle, i.e. the hydrogen 
nucleus or p+(n+), the host metal electrons, and the host ions, which are all coupled. 
Firstly, the system of the host metal electrons is strongly perturbed due to the presence 
of the particle, giving rise to screening of the particle charge and to modifications in the 
interactions between the screened host ions. Secondly, the screened particle couples to the 
host ions which leads to strong local lattice distortions and thus to self-trapping. A further 
complication comes into the problem because the particle is light and therefore its degrees of 
freedom have to be treated quantum mechanically. All these-effects have to be incorporated 
into a satisfactory theoretical treatment of the problem. 

The phenomena which we want to discuss are energetics and site assignment, lattice 
displacements in the self-trapped state, local vibrations of the impurity, and diffusion-related 
properties. The emphasis is on the first three problems whose solution provides the basis 
for a treatment of the numerous questions related to the field of quantum diffusion. In 
particular, we want to investigate the dependence of site occupation and of the local lattice 
distortions on the particle mass. Furthermore, we want to know how big the differences in 
the lattice distortions are between the particle being in the ground or an excited vibrational 
state. 

The problems mentioned above have already heen tackled in several previous treatments 
on the basis of a computational scheme in which the metal-particle interaction is either 
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described by empirical pair potentials (Sugimoto and Fukai 1980 and 1981, Klamt and 
Teichler 1986% 1986b, Christodoulos and Gillan 1991) OT within the framework of the 
quasi-atom (effective medium) theory (Puska and Nieminen 1984). The elastic response of 
the lattice was described by static lattice Green functions (Sugimoto and Fukai 1980 and 
1981, Klamt and Teichler 1986% 1986b, Puska and Nieminen 1984) and the interactions 
among the host atoms were modelled by FinnisSinclair potentials (Christodoulos and Gillan 
1991). The strength of these treatments is that they take the quantum character of the particle 
fully into account. Their weakness is the use of empirical pair potentials which are obtained 
by fitting to only a few experimental data, i.e. to typically two or three excitation energies of 
localized particle vibrations, as determined by inelastic neutron scattering, and to the elastic 
double-force tensor. First of all this reduces the predictive power of the method and secondly 
one cannot expect that a detailed and precise modelling of the particl+host interaction is 
possible in this way. Furthermore, for many materials of interest the required experimental 
data are not available. In their work Puska and Nieminen (1984) avoided using experimental 
data. However, because of the use of the quasi-atom concept, quantitative accuracy in the 
interaction energies could be claimed only at the level of about 0.2-0.5 eV. A treatment 
based on the quasi-atom concept in its present development is therefore not suited for giving 
reliable answers to the subtle problems mentioned above. 

On the other hand, full ab initio computations which include all the different aspects 
discussed at the beginning of this section are at present, even within the localdensity 
approximation, completely impossible. Therefore a pair-potential description of the particle- 
host interaction has also been chosen in the present work, but with the important modification 
that the pair potentials are constructed on the basis of ab initio calculations in the local- 
density approximation. The response of the host lattice is treated using lattice Green 
functions. In constructing the pair potentials the following data obtained by ab initio 
pseudopotential calculations in the localdensity approximation have been used: 

(i) total energy cwes of ordered metal-hydrogen alloys as a function of the 
displacement of the hydrogen sublattice relative to the sublattice formed by the host metal; 

(ii) forces exexted on neighbouring metal atoms as hydrogen is introduced into the rigid 
host lattice; 

(iii) information on forces contained in the calculated volume expansion due to hydrogen 
loading. 

In the ab initio calculations the extension of the hydrogen nuclear wavefunction is 
entirely neglected. Furthermore, the calculation of the local lattice relaxation is quite 
time consuming and therefore can be performed for only a few high-symmetry situations. 
Proceeding in two steps, as will be done in the present work, avoids these shortcomings of 
state-of-the-art ab initio treatments of hydrogen in metals without losing too much of the 
precision reached by these techniques during the last few years. 

The particular material investigated in this part of the present work (part I) is the 
FCC metal Pd. Part II (Krimmel et al 1994) is devoted to @-Fe which crystallizes in the 
BCC structure. To the best knowledge of the authors the only work that treats particle 
wavefunction and local lattice relaxation for a Fcc metal in detail is the work by Puska 
and Nieminen (1984) who calculated the ground-state vibrations and the corresponding 
lattice distortions for various hydrogen ‘isotopes’ including p+ in several FCC metals and at 
octahedral (0) as well as tetrahedral (T) sites in order to determine the stable site. Eilllier 
work by Teichler (1978) on Cu includes the ground-state wavefunction of the particle in the 
calculation of lattice relaxations, but not self-consistently, and in very recent calculations of 
H in Pd with the effectivemedium theory (e.g. Christensen eta1 1990, Engberg e t d  1993) 
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the particle is considered as point-like. The aims of the present calculations are as follows. 

(i) To determine the sites at which self-localization of the particle takes place and to 
investigate whether in addition to the self-trapped state with minimum energy there exists 
a second metastable self-trapped state localized at some other site, the metastable site. The, 
particle-mass dependence of the site-stability will be taken into account. 

(ii) To investigate the dependence of the local lattice relaxation at fixed particle mass on 
the vibrational state of the particle. Particular emphasis is laid on the role of the Jahn-Teller 
effect of degenerate excited particle states and on the determination of the relevant coupling 
parameters to the lattice because certain peculiarities in the inelastic neutron scattering 
spectra in PdHx were amibuted to the Jahn-Teller effect (Klamt 1987). 

The layout of the paper is as follows. In section 2 a general outline of the method is 
given and the basic formulae, although already given in previous papers, are collected and 
discussed in the context of the present treatment. Section 3 gives details of the construction 
of the pair potential. Sections 4 to 7 contain the results. 

2. The model 

The calculation scheme used in the present treatment is the same as the one already employed 
in a series of previous treatments of hydrogen-metal systems (Sugimoto and Fukai 1980, 
1981, F’uska and Nieminen 1984, Klamt and Teichler 1986a, 1986b). A modified version 
of the treatment of the host-atom-host-atom interaction was employed in the work of 
Christodoulos and Gillan (1991). In order to derive the basic equations, the electronic 
degrees of freedom are eliminated via the Bom-Oppenheimer approximation in a first step. 
After that the Hamiltonian describing the system consisting now of the host lattice and of 
the particle coupled to the host-lattice atoms may be written in the form 

X = Ti + Ti+ Hk(R) + U(& T) (1) 
where TL and Tp are the kinetic energy operators of the lattice or the particle, respectively, 
and where the adiabatic potential has been decomposed into a term Hk describing the 
interaction among the lattice atoms in the absence of the particle and a term U which 
contains all interactions associated with the presence of the particle. R denotes the 3N 
coordinates of the host-lattice atoms and T the particle coordinates. The interaction U may 
be built up by pairwise interactions between the particle and the neighbouring host-lattice 
atoms, by the differences in the interaction among host-lattice atoms in the vicinity of the 
particle which are induced by the particle, and by further many-body effects. 

The next step is the adiabatic decoupling of the motion of the particle from that of 
the host-lattice atoms in a second Bom-Oppenheimer approximation. This leads us to the 
Schriidinger equation 

[TP + U@, mhv, R) = E=(R)y=(T. R) (2) 

from which the particle wavefunction @‘(r, R) and energy E‘(R) at a fixed configuration 
of the host lattice may be calculated. In the present treatment the harmonic approximation 
for the host-lattice interaction He in the absence of the particle is adopted, i.e. 

HO U- -1 zu Dou (3) 

where U is a 3N-dimensional vector containing the displacements of the host-lattice atoms 
from their equilibrium positions (@) in the lattice without a particle and Do is the matrix 
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of force constants of the unloaded lattice. The static equilibrium configuration Fq or U& 
of the lattice in the presence of the particle in state 01 is determined by 

(4) Dou& i- VuEa(u&) = 0 

DOu& + ($YT ,  U&)lVUU(Ro+ U&, T ) l V ( T ,  U&)) = 0. 

which may be expressed via the Helhann-Feynman theorem (Hellmann 1937, Feynman 

(5) 

U& = G0P(u&) ( 6 4  

@ := (Do)-' (6b) 
F%) = --(V(T, 1-l)lVd(RO +U, r ) l V ( T ,  U)). (64 

@ is the static lattice Green function (Tewary 1973, Leibfried and Breuer 1978) and 
FDL(u) is the expectation value of the forces exerted on the host-lattice atom at the lattice 
configuration U, calculated with the eigenfunction of the particle in state 01 at the same U. If 
V(Ro + U, T )  and @ are known, equations (2). (6a) and (6c) may be evaluated iteratively 
in the way described by Sngimoto and Fukai (1980,1981), Puska and Nieminen (1984), and 
by Klamt and Teichler (1986% 1986b) in order to obtain self-consistent solutions, i.e. the 
equilibrium displacements U: which are consistent with the forces calculated from (64 and 
(6c) using the solution 21eq) of the Schrodinger equation (2) in the potential which 
corresponds to the displacements ual 

In order to illustrate some general problems we first describe the potential surface 
U(Ro+u, r) approximately as a sum of pair potentials f between the particle and the host 
atoms and by an additional term which takes into account that the force constants between 
the host atoms in the vicinity of the particle may be different from those in the unloaded 
lattice. This change in the forceconstant matrix is denoted by SD. Thus one obtains 

(7) 

where R:, U, are. now three-component vectors giving the position of the host atom with 
number n. From (6c) one obtains 

(8) 

The first term in (8) is non-vanishing for U. = 0. Each term in the sum over n contributes 
to just the components of Fe describing the forces on atom n. Of course, the first term in 
(8) could be replaced or supplemented by more complicated many-body forces. The second 
term is non-vanishing only for U # 0. Although this term should be better viewed as 
contributing to the elastic energy of the host lattice, it is attributed to the particle energy. If 
in the following we speak of an elastic energy, we are referring only to the elastic energy that 
is stored in the unloaded reference lattice if the same lattice displacements are introduced 
there as in the lattice containing the particle. This energy is given by 

1939) as 

Equation (5) may then be written in the form 

U(@ + U, r)  = f ( ~  - (R: + U,J)  + +SD(T)U 
n 

F'(u, T )  = - ~ ( @ . " l V u n " ~  - (g +u.))l@") - (@"lW@")u. 
n 

Eel = $D0u = ~Fu. (9) 
Now we can formulate the requirements for an adequate treatment of the particlehost 
system. Firstly, we have to demand that the T dependence of U(R, r )  is modelled precisely 
enough for all relevant lattice configurations Rand  those values of r which are important in 
order to calculate accurate particle wavefunctions and vibrational energies (measured from 
the minimum of U(R. T )  as a function of r). Secondly, we have to know those terms which 
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do not greatly change the shape of U(R, r) as a function of r but lead to a shift of the 
potential as R is changed from Ro to @+U. One term of this kind is the second one in (8) 
since SO(?-) presumably depends only weakly on r. This tem has a quadratic dependence 
on U. However, contributions to U(R, r)  depending weakly on r and contributing already 
to linear order in U are conceivable as well. Such terms are important for two reasons: 
firstly, they may enter into the total energetics which, for example, becomes relevant if the 
relative stability of different sites occupied by the particle is investigated; secondly, they 
enter into the fictitious forces which act on the reference lattice. In this way these terms 
affect the determination of uq and of the elastic energy. 

In the following we describe all the discussed effects approximately by a superposition 
of radial pair potentials 

At first sight the individual terms in (10) seem to he unsuited to describing the contribution 
of the elastic energy fu6Du to U(R, r), because each individual interaction in (10) gives 
rise to forces on the particle and on the host atoms which are related by the principle of 
action and reaction whereas fuSDu leads to forces on the host atoms (for U # 0), but not 
necessarily to forces on the particle. However, due to the occurrence of the sum over host 
lattice atoms the msafz is flexible enough to describe approximately all the various effects 
discussed before. 

In order to determine the parameters which appear in V, the ansae (10) was fitted to the 
following data, which for the main part are results of self-consistent ab initio pseudopotential 
calculations @Kisser 1990, Elsisser etal 1991a, 1991b. 1992, 1994a, 1994b) based on the 
density functional theory in the local-density approximation: 

(i) a whole set of energy versus displacement curves which were obtained in a series 
of total energy calculations for a supercell geometry in which the hydrogen sublattice was 
rigidly displaced relative to the host lattice along certain high-symmehy directions; thereby 
the local relaxation of the host-lattice atoms surrounding the particles is not considered, but 
a volume expansion of the supercells due to the introduction of the particles is taken into 
account; 

(ii) forces that act on neighbouring host-lattice atoms if a hydrogen atom is placed at 
some high-symmehy position and the lattice atoms are kept at the sites of the unloaded 
lattice; 

(iii) the elastic double-force tensor determined from either the measured or the calculated 
volume expansion caused by loading the host crystaJ with hydrogen. 

A detailed discussion of the particular data used in order to construct pair potentials is 
given separately in section 3 for Pd and in section 2 of part II (Krimmel eta1 1994) for Fe. 
However, a few general remarks will be given here. 

The energy versus displacement curves at a given lattice configuration R (undistorted 
host lattice with the new equilibrium lattice constant for the loaded system) are only available 
for materials with a high hydrogen content (F'dH, Pd4H, FeH) because only in such cases 
can one work with supercells that are small enough to keep the computing effort withii 
reasonable bounds. On the other hand, ow ultimate aim is the investigation of the properties 
of a single defect (limit of low defect concentration) and not of a dense defect lattice. In 
the case of Pd where energy versus displacement curves are available for more than one 
single hydrogen concentration, it is therefore tempting to give higher priority to a good 
fit of the pair potential to the energy curves of the material with lower hydrogen content 
(see below). Nevertheless, the other energy curve is also included in the Etting procedure 
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because we can expect that this will improve the transferability with regard to changes in 
the host-atom distances. In fact, the energy versus displacement curves were calculated at 
the equilibrium lattice constant which changes with hydrogen content. On the other hand, 
one might think that the variation of the hydrogen content leads to additional variations in 
the pair and many-body interactions which are not describable in terms of a dependence 
on the lattice constant (or lattice configuration R). Since we are only interested in the 
low-concentration limit we would not want this dependence to be included. However, such 
effects appear to be unimportant. We note that the pair interactions among the hydrogen 
atoms do not influence the shape of the energy versus displacement curves but lead only 
to a constant energy shift because the hydrogen sublattice is shifted rigidly relative to the 
host lattice. The same is apparently true for other interactions since calculations of the 
energy differences between the octahedral and the tetrahedral site as well as between the 
octahedral site and the lowest lying saddle point performed on PdH, atfired [anice constant 
and for hydrogen concentrations ranging from x = 1 to x = 1/32 show that these energy 
differences are essentially independent of the hydrogen content. Therefore, the changes in 
the energy versus displacement curves, calculated at the equilibrium lattice constant, as one 
goes from PdH to PQH should reflect the variation of the potential energy surface U(R, T )  

with the lattice configuration R for a single hydrogen atom in the host crystal. From this 
point of view the energy curves which should get the largest weight in the fitting procedure 
are those corresponding to nearest-neighbour distances which are near to the typical host- 
atom-host-atom distances in the locally relaxed environment of the hydrogen impurity. For 
hydrogen placed at an 0 site this is the case for PQH as shown below. 

The fit of (10) to the energy versus displacement curves is not unique. Many very 
different pair potentials (purely repulsive potentials as well as potentials which are attractive 
at larger distances) give very good fits. This freedom can be used and has to be used to 
incorporate information on forces into the pair potential. The ab initio computation of forces 
representative for a single hydrogen atom requires the use of rather large supercells since the 
computed forces are the result of the superposition of the individual contributions from all 
hydrogen atoms of the hydrogen sublattice and are therefore largely determined by symmetry 
conditions for small supercells. For hydrogen sitting at high-symmetry sites and for small 
supercells the forces on neighbouring atoms are bound to vanish. Of particular importance 
is the knowledge of the forces acting on the neighbouring host atoms of hydrogen placed 
at a local minimum or at a saddle point of U(Ro, T ) .  The local minima are important 
because there the occupation probability for the particle may have maxima and therefore 
these points are representative for the computation of the forces F" from equation (6c). The 
forces on the neighbouring host atoms of a particle at a saddle point may become important 
in the calculation of transport properties (of saddle-point energies, for instance), or in some 
cases it may even happen that a saddle point is converted into a local minimum due to 
lattice relaxations. Additional information on the forces at the stationary points is also 
needed because, even if only pair interactions are relevant, the energy versus displacement 
curves give the least reliable information on forces between an individual pair of atoms for 
a partide located in the vicinity of such points. The conhibution to the forces due to the 
change 6D in the force-constant matrix are not included in the ab initio forces since these 
are calculated neglecting local lattice relaxation. However, many-body effects contributing 
to U(& T )  and to linear order in U are included in the ab initio forces. 

Information on the '6D terms' is, however, included in the double-force tensor which 
is defined by 
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where q ( n )  is the j th component of the force (6c) on the nth host atom and R!(n) the i 
component of its distance vector from the particle. The trace of P may be determined from 
the volume change per hydrogen impurity of the host crystal, which may be either derived 
from ab initio calculations or, if availablc, from experiment. Very recently the components 
of P have been calculated ab initio directly from the Hellmann-Feynman forces on Pd 
and Nb atoms in a series of cubic supercells (Ek&ser et ai 1994b). The experimentally 
measured volume change for cubic symmetry is given by (see, e.g., Leibfried and Breuer 
1978, Peisl 1978) 

AV = trP/(3K) (12) 
where K is the hulk modulus. In the ab initio calculation the situation corresponds to 
a particle with a 6-shaped wavefunction placed at some interstitial site and therefore in 
calculating the forces which appear in (11) no quantum mechanical averaging has to be 
considered. In contrast, the experimental value of P i j  is determined by the quantum 
mechanical expectation value of the forces and hence is related to the real wavefunction 
of the particle. From the double-force tensor, information about forces acting on particular 
neighbouring host atoms can be determined only if the particle occupies high-symmetry 
sites and if the pair interactions are of short range otherwise the number of unknown forces 
exceeds by far the number of independent equations provided by P. In the following, 
the interactions will be cut off by a smooth cut-off function such that the forces are non- 
vanishing only for the host atoms in the first- and second-neighbour shell of an 0 or T site. 

Table 1. Ab initio forces on the nearest-neighbour atoms in units of eV A-' for hydrogen on 
the tetrahedral 0,octakW (0). and the hiangular saddle pint SIU (see figure 1). Pd atoms 
on regular lanice positions. lattice mustant a = 3.88 A. Uncomted dam in mnnd brackets 
(sec text). 

H on T site H on Sill H on 0 site 

Pd32H (1.54) 1.77 (2.47) 2.70 (0.05) 0.23 
Pdl6H (1.59) 1.70 (2.44) 2.57 (0.15) 0.26 
PdsH (1.62) 1.70 (2.65) 2.57 (0.31) 0.33 

3. Determinalion of the pair potenlkd 

In constructing the pair potential data obtained by ab initio pseudopotential calculations 
(Elsilsser 1990, Elsilsser et ai 1991a. 1991b, 1992, 1994b) on cubic Pd,H supercells 
(n = 1,4,8,16,32) are used following the general principles outlined in section 2. Energy 
versus displacement curves are available for PdH supercells at the ab initio equilibrium 
lattice constant a = 4.07 A, for H placed at the octahedral site, and for P&H (a = 3.94 A) 
(see Elsilsser 1990, Els&ser et al 1991a, 1991h, 1992). For comparison, the ab initio lattice 
constant for unloaded Pd is a = 3.88 A. The energy versus displacement curves were 
calculated along the four directions depicted in figure 1 by computing the total energies 
as the hydrogen atom in the respective supercell is placed at a series of different points 
on these lines while the Pd atoms are held-fixed at the positions they take if hydrogen 
sits at 0 sites. The energy of the system if H is at an 0 site was chosen as energy 
zero. These data are shown as mosses in figures 2 and 3. Forces acting on Pd atoms in 
the neighbourhood of hydrogen were calculated by Elsilsser et ai (1992, 1994b) using the 
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-=-----a- 
Figure l. The elementary unit ell of face-centred cubic Pd with the lines along which the 
energy versus displacement curves have been calculated ab inilia 

Hellmann-Feynman theorem. Forces which are useful for our purposes may be obtained 
only for larger supercells, i.e. PdgH, Pdl6H, Pd32H. All forces were calculated for the Pd 
atoms held fixed at the positions of an unloaded Pd lattice. Forces which act on the nearest- 
neighbour atoms if hydrogen sits at an octahedral (0) site, on a tetrahedral (T) site or at 
the triangular saddle point Sill (see figure 1) are given in table 1. The values in round 
brackets are the ones calculated by Elshser et a1 (1992). The other data were obtained by 
Elshser et nl (1994b) after submission of the present paper. Both data sets are based on 
the same computational results, however, an improved analysis as developed by Elsisser et 
a1 (1994a, 1994c) has been employed in the recent paper by Elshser et a1 (1994b). The 
absolute differences in the two data sets are small and are significant therefore only in the 
case where the forces are small anyway. This happens to be the case for the forces acting on 
the nearest neighbours of hydrogen placed at an 0 site as well as for the forces on second 
and further distant neighbours if hydrogen is placed at either a T site, the saddle point Sill, 
or an 0 site (forces on second and fiuther distant neighbours may be found in Elsiisser 
er a1 1994b). A comparison of the results obtained for different supercell sizes (different 
hydrogen-hydrogen distances) shows that for both data sets the forces acting on the nearest 
neighbours of H'at T or Sill are converged with respect to the supercell size (see table 
1). Apparently, this is not hue for forces exerted on the nearest-neighbour Pd atoms of 
hydrogen placed at the 0 site if these are calculated according to the old scheme (in table 
1 the data in round brackets). The convergence with respect to the supercell size, however, 
is considerably improved for the corrected data. This together with the findings that in 
the Pd32H supercell calculation the corrected forces on the atoms in the second-neighbour 
shell of the 0 site are positive (repulsive) and that the double-force tensor comes out 
positive and with a reasonable magnitude (see E l she r  et nl 1994b and comments below), 
in contrast to an unphysical negative doubleforce tensor obtained from the uncorrected 
forces for hydrogen on 0 sites, gives us the confidence that the corrected forces on the 
nearest as well as on the second nearest neighbours of hydrogen on 0 sites may be used in 
the construction of the pair potential. The forces on atoms in the thud and fourth neighbour 
shell of the 0 site come out very small and negative (attractive) but are well below the 
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estimated confidence level of about 0.1 eV A-' and for Pd32H may even still be affected 
by the superposition of force patterns due to hydrogen in neighbouring supercells. The 
situation is similar for the more distant Pd shells of hydrogen at T or SIII. In view of 
the lack of trustworthy information on forces at larger distances we have chosen to cut 
off the pair potential at distances between the second- and third-neighbour shell of the 0 
site. It should be noted, however, that the trace of the double-force tensor computed for 
hydrogen at 0 sites from the corrected forces on the first and second Pd shell (neglecting 
further distant shells) is only about 7.0 eV and thus smaller than the experimental value 
t r P  = 10.0f0.5 eV (see Peisl 1978) and smaller than the values obtained from the lattice- 
parameter change upon hydrogen loding as determined from the ab initio calculations on 
the Pd,H supercells. Linear extrapolation of the Pd,H data to small hydrogen concentrations 
gives trP = 9.0eV. (PdH) or trP = 11.0 eV (Pd4H). This discrepancy may have its origin 
either in a longer range of the forces or in an underestimation of the forces on the two closest 
Pd shells. In the following we give results obtained with two different pair potentials. Pair 
potential I is the one which was constructed before the corrected force values were available, 
pair potential II is the one which incorporates these corrected forces. Both pair potentials 
give a very good description of the energy versus displacement curves over most hydrogen 
positions for which ab initio data are available. At lower energies differences in this respect 
exist only in details except for the (111) direction connecting the 0 and the T site. For this 
direction, as discussed in length below, the overall performance of pair potential Il is better. 
On the other hand the energy range covered by pair potential I is larger. Furthermore, 
both potentials describe the forces on the nearest neighbours if hydrogen is placed at the 
T site or at the triangular saddle point Sill almost equally well @air potential I reproduces 
perfectly the data in round brackets, pair potential II the corrected data in table 1, which are 
quite close to the uncorrected ones). However, pair potential II presumably gives a better 
description of the forces at distances corresponding to the nearest- and second-neighbour 
shell of the 0 site because it is fitted to the ub initio forces acting on the atoms of these 
shells. In contrast, in constructing pair potential I no corresponding ab initio forces had 
been used since we did not hust the uncorrected ab initio forces on these atoms available 
at that time, and this turned out to be wise. Information on these forces was included only 
in so far as a reasonable description of trP for hydrogen at an 0 site was demanded (a 
detailed comparison of ab  initio forces and forces calculated from the two pair potentials 
is given below). However, fixing the value of trP even if short-range forces are assumed 
still leaves freedom in 'distributing the forces' among the two neighbouring shells. 

In our judgement, pair potential II is the one which is much better and should be used if, 
as in the present paper, equilibrium properties are to be calculated. We give, nevertheless, 
pair potential I since it may be useful for other purposes. We also include the data obtained 
with pair potential I in tables 2-9 (data in round brackets) because a comparison of the 
two data sets shows which of the results might be sensitive to some remaining uncertainties 
existing at the present stage of development of the method and since it indicates how big 
the resulting uncertainties in the results might be. 

The explicit analytical expressions for the two pair potentials determined by this 
procedure are as follows. Pair potential I is given by 

V'(r)/eV = 1363.4673 exp(-r/0.04582a) + 1.5716 e~p[-(r/a)~"'"/0.001982] 
+{0.3033[exp((r - 0.6147a)/O.O7184a) + U-' 
f2.2055 exp(-r/O.Z4727a)]f(r) 
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Figure 2. The pair-potential description of ths a6 initio calculated energy versus displacement 
curves (crosses) of PGH (a = 3.94 A) along the various palhs given in figure 1. Solid curves 
c n m p n d  to pair potential I, dashed curves to pair potential 11. 
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pair potential I, dashed curves to pair potential IL 

with the smooth cut-off function (Klamt and Teichler 1986a. 1986b) 

(a = 3.94 .k is the lattice constant of P&H) for the long-range part of the potential introduced 
in order to avoid artefacts due to abruptly cutting off the potential). 

Pair potential II is paramehized by the following simple expression: 
Vn(r)/eV = ( 3 . 9 5 9 8 e ~ p ~ - ( r / a ) ~ ~ ~ ~ / 0 . 0 0 2 0 7 5 ]  + 0.74295)g(r) (15) 

with 
1 - exp[-(r - a)2/(0.6633a)2] forr < a 

forr > a  g0) = I 
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(a = 3.94 A). At large distances the behaviour of Vn(r) is determined by g(r)  which at 
the same time serves as a cut-off function. 

The energy versus displacement curves computed from the two pair potentials at the 
lattice constant of P&H are shown in figure 2 (the solid curves correspond to pair potential 
I, the dashed curves to pair potential 11) together with the ab initio data for Pd4H. The 
analogous curves obtained at the PdH lattice constant are given in f i p  3 together with the 
PdH ab initio data. Both pair potentials give a remarkably good overall description of the 
energy versus displacement curves for Pd4H as well as for PdH. A big difference between 
the calculations performed with pair potentials I and II occurs if hydrogen is shifted along 
the (001) direction from the 0 site towards a nearest-neighbour Pd atom. The ab initio 
results at r/a = 0.2 from the 0 site along this direction are E w 3.1 eV (Pd4H) or E w 
2.4 eV PdH) (these data are omitted in figures 2 and 3 because they lie outside the energy 
scale of these figures) and are in very good agreement with the energy values calculated 
from pair potential I whereas pair potential 11 gives far too small energies at this hydrogen 
position. This means that pair potential II is too soft at short distances. Such high energies, 
however, are not relevant to the calculation of equilibrium properties as performed in the 
present paper, but may become important in molecular dynamics simulations. 

Pair potential I gives a good fit to the ab initio energy versus displacement curves 
obtained for P M  whereas the curves calculated with pair potential II deviate slightly 
more. This statement is still correct for the PdH curves with the exception of the curve along 
the (111) direction which starts at the 0 site, passes first though Sill and then through 
the tetrahedral site. Nevertheless, pair potential II gives a good enough fit even to the 
P&H energy curves so that a high-quality description of hydrogen vibrational energies and 
wavefunctions can be expected even for situations in which the distances between hydrogen 
and the nearest-neighbour Pd atoms after lattice relaxation are in better correspondence 
to the P&H than to the PdH lattice constant This is particularly so if states localized 
near the 0 site are considered. The advantage of pair potential II is that it gives a very 
reasonable description of the energy versus displacement curve along (111) for PdH as 
well as for P&H whereas pair potential I gives a less satisfactory description for PdH. 
According to our remarks in section 2 this is equivalent to a good representation of the 
energy versus displacement curves of isolated hydrogen in a rigid lattice and at two lattice 
constants, i.e. 4.07 A (PdH) and 3.94 A (P&H). The same seems to be true at the Pd lattice 
constant (3.88 A) where the full energy versus displacement curve is not known but the 
energy difference between the local minima at T and 0 sites as obtained from ab initio 
computations is well reproduced by pair potential U. The good description by pair potential 
11 of the minimum at T sites for several lattice constants indicates that the sharp bend in 
pair potential ll (see figure 4) just above the distance between the T sites and its nearest Pd 
neighbours (at the Pd lattice constant) is real (see also section 6). 

A further advantage of pair potential U is that in its construction ab initio forces at 
distances corresponding to the nearest and next-nearest Pd shells of an 0 site are explicitly 
used. For this reason it is expected that the local lattice relaxation of states concentrated 
around the 0 site is better described by pair potential II. In order to give a comparison of 
the two pair potentials in this respect we list the values of the forces on the first and second 
Pd shell due to hydrogen at an 0 site and of trP as calculated from both pair potentials 
together with the corresponding ab initio data. The forces on the atoms in the first shell 
are 0.66 eV A-' (pair potential I), 0.27 eV (pair potential 11), 0.23 eV A-' (ab initio); the 
forces on the second shell 0.04 eV A-' @air potential I), 0.12 eV A-' @air potential II), 
0.15 eV A-' (ab initio). TrP is 8.8 eV (pair potential I, 9.1 eV for protons if the extension 
of the wavefunction is included), 6.4 eV @air potential 11, 7.3 eV for P), 7.0 eV (ab initio 
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Figure 4. Pair potential I and 11. Figure 5. Example of a tetragonal distor!ioo according 
to Emode coupling. 

if only two shells are included). S i c e  pair potential II gives forces which decay only very 
slowly between the first and the second Pd shell, the behaviour of pair potential II is less 
smooth than that of pair potential I (see figure 4), but as mentioned above, additional support 
for this type of distance dependence of Vn(r)  comes from the energy curves along (1 11). It 
is clear that the displacements of the nearest neighbours which are obtained if pair potential 
11 is employed will be smaller than the corresponding values obtained with pair potential 
I. This will also lead to smaller elastic energies if the calculatiom are performed with pair 
potential II. On the other hand, these elastic energies are somewhat underestimated since. 
pair potential II gives a too small W P .  How other quantities such as the vibrational energies 
or the Jahn-Teller coupling energies are affected by changing from pair potential I to pair 
potential II remains to be seen. 

4 . ~  Particle states in the rigid palladium lattice 

The particle states in the periodic potential due to the rigid Pd lattice (lattice constant = 3.88 
A) are calculated in order to give a survey over the states and their local symmetries and 
because they will be needed later as a reference in the calculation of self-trapping energies. 
The calculations are. reshicted to the r point (reciprocal lattice vector k = 0). This is 
sufficient since. the energy bands are. extremely narrow. The solution of the Schrodinger 
equation is accomplished by a method first described by Kimball and Shortley (1934) 
imposing periodic boundary conditions on the wavefunction. A detailed description is also 
given in the work of Puska and Nieminen (1984). In order to obtain accurate and stable 
solutions symmetry arguments should be exploited. Full use of symmetry is absolutely 
necessary if degenerate or nearly degenerate eigenstates are calculated. The calculations 
have been performed on a mesh of points building a simple cubic lattice. In order to test 
the convergence with respect to the number of mesh points, calculations were performed 
with several mesh widths, in particular with a width of 0.0647 8, and 0.0485 A. Table 2 
gives the energies E[ of the six lowest eigenstates which all have the maximum occupation 
probabilities at the 0 site, measured ftom the potential minimum of the periodic potential 
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at the 0 site, as well as symmehy (the Mullikan notation is used, see, e.g., Burns 1977) 
and degeneracy of the states. 

Table 2. Eigenstates of the hydrogen isotopes @+. n+. p. d, t). Symnehy (Mullikan notation), 
degeneracy, vibrational energies (energies Ej above the potential minimum at the 0 site. obtained 
with potential 11 and, in brackets. with potential I) calculated (1) in the periodic potenlid of 
the rigid Pd lattice (a = 3.88A) at the r point (E:; all states have the " u m  occupation 
probabiity at 0 sites) (2) in the potential corresponding to the lanice configuration of the 
self-mpped ground sfate (marked sm). In all calculations a mesh width of 0.0647 A has been 
used. For mmpadson the ab inirw results for undistorted P&H at the equilibrium lattice constant 
LI = 3.94 A (Els8s.w er ol 1991b) are given (lines marked with Pd& 

State i 0 1 2 3 4 5 

*k 
1 

468 (464) 
409 (390) 
399 (394) 

348 (331) 
129 (131) 

112 (109) 
106 
86 (89) 

74 (73) 
70 

67 (71) 
58 (58) 
55 

Tiu 
3 

814 (817) 
722 (686) 
696 (689) 

617 (582) 
227 (227) 

203 (190) 

317 (314) 337 031) 357 (349) 

280 (263) 301 (281) 321 (297) . .  . .  . .  . .  
1 89 264 285 303 
150 (152) 210 (212) 223 (222) 233 (231) 

132 (127) 
124 

118 (121) 

98 
103 (101) 

185 (177) 198 (187) 209 (195) 
174 188 198 

165 (169) 175 (175) 182 (181) 
145 (140) 155 (147) 162 (153) 
137 148 155 

(393) 

(329) 
330 ' 
(267) 

The entries in table 2 as well as in all following calculations in sections 5 to 7 of 
wavefunctions and energies are determined on a grid with mesh width of 0.0647 A. The 
ground-state energies calculated with a mesh width of 0.0485 A are higher by 0.8 meV, 
0.6 meV or 0.4 meV for fi+. n+ and the 'true' hydrogen isotopes p, d, t. The excitation 
energies up to the Mth excited state come out by about 1 to 3 meV higher as the mesh 
width is reduced from 0.0647 to 0.0485 A. The variation is always larger for the lighter 
particle and the higher excited state. 

The number of iteration steps that bave to be performed until the energy eigenvalues 
at a given mesh width are stationary within given accuracy limits increases rapidly with 
decreasing mesh width. The accuracy with respect to the number of iteration steps is better 
than 0.1 meV. 

In table 2 the numbers in round brackets are calculated with pair potential I, the others 
with pair potential U. Differences in the two data sets obtained at the fixed rigid Pd lattice 
configuration but with two different pair potentials reflect, in the 6rst place, slight differences 
in the quality of the fits to the ab initio adiabatic potentials (in particular to the one obtained 
for PGH) and, in the second place, a slightly different extrapolation of the adiabatic potential 
to the Pd lattice constanf. These differences, however, are not serious. The energies of the 
eigenstates below and around 200 meV come out somewhat smaller if the calculations are 
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carried out with pair potential 11 because this potential gives rise to a wider bottom of the 
potential well at the 0 site than pair potential I, in better agreement with the ab initio data 
(see figures 2 and 3). For higher energy states the situation is reversed. Figure 2 gives an 
obvious explanation for this reversal. 

5. Self-localized states at the octahedral site 

In order to investigate self-localized states centred at an 0 site it is demanded that the 
wavefunction vanishes on the surface of a sufficiently large sphere surrounding the 0 site. 
The wavefunctions and local lattice distortions are calculated iteratively from equations (Z), 
(60) and (6c) using the static lattice Green function given by MacGillivray and Sholl(l983). 
The relaxation of the 14 nearest and next-nearest neighbour Pd atoms is considered. The 
total energy change with respect to the energy of the corresponding state in the rigid, 
undeformed lattice, i.e. the self-trapping energy, may be written as 

AE? = AET' + AE? +E?. 

The fist term in (17) is defined as AEyb = E:' - E;, where E:' is the vibrational energy 
measured from the bottom of the local potential minimum formed after self-trapping and E! 
is the corresponding vibrational energy in the periodic potential of the rigid lattice (see table 
2). In the following, the superscript 'st' is skipped for notational convenience. In other 
words, AEyb is the change in the vibrational energy caused by the change of the width 
of the potential well due to lattice relaxation. AE- is the shift in energy of the bottom 
of the potential well caused by lattice relaxation, and Egf is the elastic energy which has 
to be brought up in order to deform the host lattice. E F  is calculated from equation (9) 
using the self-consistently determined forces and displacements. AEy' depends of course 
on the vibrational state. However, AE? and EFf may also show some dependence on the 
vibrational state because the expectation values of forces (see equation (8)) depend somewhat 
on the particle's vibrational state. Such effects are discussed in section 6. Table 3 shows 
the ground-state vibrational energies Eo of various isotopes as well as the self-trapping 
energies AEF together with the individual terms of equation (17) contributing to the latter. 
Furthermore, the displacements of the nearest and next-nearest neighbour Pd atoms in units 
of the lattice constant a = 3.88 A of the unloaded Pd lattice and the trace of the double-force 
tensor are given. Table 3 shows that at least for the light isotopes a quite substantial isotope 
effect exists for all quantities related to the local lattice deformations, which is completely 
missed in typical ab initio methods where for the calculation of lattice relaxations hydrogen 
is treated as a classical particle (corresponding to a particle with infinite mass). Since pair 
potential II gives forces on the nearest-neighbour Pd shell which are considerable smaller 
than those caused by pair potential I, calculations with pair potential II give much smaller 
displacements of the nearest-neighbour Pd atoms than corresponding ones performed with 
pair potential I. For this reason all energy changes associated with lattice relaxation are 
much smaller if they are computed with pair potential II. The larger forces on the second 
neighbours obtained with pair potential II in comparison with potential I cannot reverse this 
trend. With respect to the isotope effects the difference between the two data sets is less 
dramatic. In view of the ab initio forces, however, we give a clear preference to the data 
obtained with pair potential U. Nevertheless, one should be aware of the fact that the too 
small trP indicates that the deformation energy associated with states localized at an 0 
site might be underestimated in the calculations performed with pair potential II. Whether 
this remaining uncertainty influences AEyb and AE? depends on whether the origin of 
the discrepancy in trP of the 0 as calculated from the ab initio forces or kom the volume 
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expansion (ab initio or measured) is mainly due to a longer range of the forces or mainly 
caused by remaining uncertainties in the short-range forces. Only in the latter case is a 
significant modification of A E ~ ~  or A E ~  expected. 

Table 3. Ground-state vibrational energy Eo in the self-trapped state at an 0 site in Pd, change 
of the VibmionzA energy AE$ ?nd change of the energy of the bottom of the potential well 
relative to the rigid lattice AEOf"'. deformation energy Ets, tMal energy gab A E P  due to 
self-trapping, relative lattiee displacements of the nearest- and next-nearest-neighbour Pd atoms, 
and pdce of the double-force tensor for the various hydrogen isotopes (mesh width 0.0647 A). 
The Pd Bfom are displaced radially ouovards from the 0 site. The calculations have been 
performed with pair paentials I and II. Results obtained with pair potential I w @en in round 
brackets. 

Eo AE;~ A E ~  E? A E ~  (A&& (Alla)tmi T r ( P )  
(mew (meV) (meV) (meV) (98 (a) (eV) 

-71 62 
(-229) (142) 
- 68 57 
(-224)~ (135) 
-55 35 
(-199) (105) 
-53 31 
(-194) (100) 
-51 29 
(-192) (98) 

- 68 0.97 
(-162) (1.54) 
-62 0.92 
(-153) (1.50) 
-37 0.68 
(-115) (1.32) 
-33 0.63 
(-109) (1.29) 
-31 0.61 
(-106) (127) 

0.34 
(0.09) 
0.35 
(0.09) 
0.37 
(0.09) 
0.38 
(0.09) 
0.38 
(0.09) 

8.82 

8.55 
(1055) 

(10.29) 
7.25 
(9.14) 
6.96 

6.83 
(8.92) 

(8.82) 

5.1. Excited states in the potential of the grod-state  confrguration 

The vibrational energies of excited states which are calculated in the potential corresponding 
to the lattice configuration of the self-trapped ground state (STGS) are given in table 2 in the 
lines marked STGS. For comparison we give hydrogen vibrational energies in the ab initio 
adiabatic potential of hydrogen in P&H. A very close agreement between.these data and 
those obtained with pair potential I is found which is due to the fact that the distances of the 
nearest-neighbour Pd atoms from the 0 site are almost identical in the relaxed ground-state 
configuration as determined with pair potential I and in PdIH. The changes in the vibrational 
energies depend on whether pair potential I or II is used. This dependence is less pronounced 
for the excitation energies E; - EO in the fixed ground-state configuration due to a partial 
cancellation of relaxation effects. The differences between the excitation energies obtained 
with the two pair potentials are 10% or less. These excitation energies are frequently used 
in interpretations of inelastic neutron scattering spectra (see, e.g., Christcdoulos and Gillan 
1991). It is argued that the excitation process is so fast that the lattice does not have the time 
to respond to the new particle state. However, quantum mechanical calculations show that 
this picture is only applicable in the case of a strong particle-lattice coupling whereas in the 
case. of weak coupling the zero-phonon line dominates, which corresponds to the difference 
between the total energy of the excited state in the lattice configuration calculated according 
to the force expectation value in this state and the ground-state energy (see Klamt 1986, 
Stoneham 1975 and references therein). 

In section 5.2 it will be shown that in the hydrogen-palladium system the weak coupling 
situation is realized and that therefore the peak positions in the inelastic neutron scattering 
spectra are not directly given by the excitation energies calculated from the entries in table 2. 
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The data of table 2 are nevertheless very important in that the differences between the total 
energies of the excited states in the ground-state configuration and the total energies obtained 
in calculations in which the lattice relaxation is calculated individually for each excited 
state determines whether the weak or strong particle-lattice coupling situation applies. 
Furthermore, we want to know how important these effects actually are. 

5.2. Excited states in the self-consistently determined particle potenrial 

The ground state couples only to lattice modes which preserve the full cubic symmetry. The 
same is true for non-degenerate excited states (exceptions occur in case of near degeneracy, 
see below). These symmetry preserving deformations, however, may be different depending 
on whether the light particle is in its ground state or in an excited state. In other words, the 
total energy of the system, with the constraint that the particle occupies a certain excited 
state, can be lowered compared with the value corresponding to the lattice configuration of 
the self-trapped ground state (see section 5.1) if the lattice undergoes a symmetry-presenring 
extra deformation. In the case of a degenerate excited state some symmetry-preserving 
extra deformation may also he present. In addition, however, coupling to Jahn-Teller 
active modes (see, e.g., Bersuker 1984) will lead to a further shift of the equilibrium lattice 
configuration of a self-trapped excited state towards configurations of lower symmetry and 
lower total energy. As a consequence of these effects the self-consistently determined 
vibrational energies E; ( i  = 1.2.. .) will be different kom the Ei values given in table 2 
(lines marked by STGS) and AE?, E" (lowering of the potential minimum due to self- 
trapping, deformation energy) will not be the same as the corresponding values calculated 
for the ground-state configuration. 

The first excited state (state l), which has symmetry 8, and which is threefold 
degenerate, may linearly couple to lattice modes transforming according to the one- 
dimensional representation AI, (these modes possess the full cubic symmetry) as well as 
to Jahn-Teller active modes which transform according to two-dimensional (Eg) or three- 
dimensional (Tzg) representations of the cubic group (see Klamt 1987, Bersuker 1984). A 
typical case of E-mode coupling which leads to a tetragonal distortion of the octahedron is 
shown in figure 5. 

In order to determine whether the first excited state couples predominantly to E or 
T modes, two calculations for each hydrogen isotope have been performed in which the 
wavefunction and the lattice distortion have been determined self-consistently. In the fust 
series of calculations tetragonal symmetry of the wavefunction is required. Thii symmetry 
condition leads automatically to a tetragonal lattice distortion which is built up by lattice 
modes possessing the full cubic symmetry (Axg) and by modes with Eg Symmetry. The 
solution obtained by this procedure corresponds to one of the tbree equivalent minima (in 
case of dominant Emode coupling) or saddle points (dominant T-mode coupling) of the 
adiabatic energy surface of the (linear) T-(e + tz) Jahn-Teller effect (see e.g., Bersuker 
1984). In the following this kind of calculation is given the label coupling to E modes. In 
the second series of calculations the iteration has been started with one of the four linear 
combinations of the three eigenfunctions of the fiu state (as obtained in the ground-state 
lattice configuration) which inevitably leads to a trigonal lattice distortion (see, e.g., Bersuker 
1984). In this case no symmetry restrictions have been imposed on the wavefunctions. 

After a few iteration steps first a self-consistent hydrogen state associated with trigonal 
lattice distortions is obtained. Thii state will be given the label T-mode coupling in 
the following. However, it turns out to be unstable against small symmetry-breaking 
perturbations, e.g., small numerical 'noise'. After many iteration steps one eventually 
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obtains a state with tetragonal symmetry which is identical to what is obtained in the first 
series of calculations (E-mode coupling). 

This shows that the trigonal points of the adiabatic potentials for the lattice motion, 
as studied i n  the second series of calculations, are saddle points whereas Emode coupling 
gives the stable points. Table 4 gives a comparison of the various energies which are 
obtained for the following situations: 

(a) if the first excited state is calculated in the ground-state configuration, 
(b) for coupling to E modes, 
(c) for coupling to T modes. 

It is seen that, in agreement with the above-mentioned stability analysis, %mode 
coupling gives for all hydrogen isotopes the largest energy gain due to self-trapping. 

A comparison of the total energies for situations (a) and (b) gives us the sum of the 
coupling energy to pure E modes and of the extra coupling to the symmetric (A lg )  modes 
(the difference to the coupling in the ground state). The same comparison for situations 
(a) and (c) gives the coupling energy to pure T modes plus the energy gain due to the 
extra coupling to AI, modes. The extra coupling energies to A I ,  modes are identical for 
situations (b) and (c) (at least for linear coupling). The two series of calculations (b) and (c) 
therefore give two equations for the three unknown coupling energies. On the other hand 
table 4 shows that in many instances coupling to T modes (plus AI, modes) leads to an 
energy gain which is very small in comparison with the one obtained for E-mode coupling. 
In such cases a comparison of the total energies as obtained for situation (a) and (b) gives 
directly the energy gain due to pure E-mode coupling. In other cases the energy gain due to 
T (+Alg) mode coupling is non-vanishing. For example, for the lighter particles &+, x+)  
the energy gain caused by Emode coupling- is quite large, of the order of 20 meV, and 
even T-mode coupling leads to an energy reduction by a few meV. We argue that the latter 
is mainly due to coupling to the symmetric mode and that the true coupling energy to E 
modes is thus given by the difference of the self-trapping energies for case (b) and (c) in 
table 4. 

This conjecture can be made plausible if we look at the displacements of the nearest- 
neighbour atoms of the particle. Table 5 gives the displacements for E-mode coupling 
together with the trace of the double-force tensor, determined from the calculated AV and 
equation (12). Table 6 shows the absolute values of the displacements for T-mode coupling 
together with an average displacement characterizing the symmetric part of the displacement 
field. Obviously, both are almost identical. This supports our view that the displacements 
obtained in the calculations (c) being essentially of A,, symmetry are equal to the symmetric 
part of the displacements which are obtained for E-mode coupling. The third line in table 6 
shows the displacements in the ground-state configuration for comparison. The energy gain 
due to E-mode coupling is for the proton only 4 meV (2 meV) if pair potential II (I) is used. 
This means that the weak coupling case (see section 5.1) is realized. If the characteristic E 
mode is assumed to have a frequency FCI O . ~ W D ( ~ O E  % 14meV in Pd) we find a coupling 
constant 1~ = A E p o ,  X 0.28(0.14). 

The self-consistent calculation of the second and thud excited state (table 7) has been 
performed without symmetry restrictions imposed on the lattice distortions and without 
chosing special start wavefunctions in $e iteration. In both cases we end up with a tetragonal 
distortion e m o d e  coupling). In the case of the second excited state with Tzg symmetry the 
interpretation, as for the first excited state, is a Jahn-Teller effect with predominant E-mode 
coupling. The third excited state (Alg) is, however, non-degenerate and the explanation for 
the appearance of Emode coupling must be a pseudo Jahn-Teller effect due to coupling to 
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TBble 4. Vibrational energy E? and change of the vibdonal energy AEFb of the first exated 
state. Change of the energy of the bottom of the potential well A E P ,  deformation energy E?', 
and the total energy gain A E p  due to self-uapping. (a) calculations performed in the ground- 
state lattice configuration (for ~ ; b  see also table 2; for A E ~  = A E ~ ,  E?' = E ~ I  see also 
table 3); (b) and (c) self-consistea lattice relaxation according lo the proper wavefunction+) 
coupling to E modes (c) coupling to T modes. Mesh width 0.0647A. me values in round 
brackets are calculated using pair potential I, the others with pair potential U. 

E? AE;nb A E ~  E?F AEY' 
(mV) (mew (mew (mew (mw 

(a) 722 (686) ~-93 (-131) -71 (-229) 62 (142) -102 (-218) 
p+ (b) 6-53 (642) -151 (-176) -82 (-251) 106 (188) -127 (-239) 

(c) 6% (670) -119 (-148) -85 (-257) 96 (182) -108 (-223) 

(a) 617 (582) -79 (-107) -68 (-224) 57 (135) -91 (-196) 
x+ (b) 568 (547) -128 (-142) -79 (-244) 94 (174) -112 (-214) 

(c) 596 (569) -100 (-120) -81 (-249) 86 (170) -96 (-199) 

(a) ux) (190) -27 (-37) -55 (-199) 35 (105) -47 (-131) 
p (b) 189 (183) -39 (-44) -61 (-208) 47 (119) -52 (-133) 

(c) 196 (188) -31 (-39) -62 (-209) 45 (118) -48 (-131) 

(a) 132 (127) -18 (-25) -53 (-194) 31 (100) -40 (-119) 
d (b) 125(123) -25 (-29) -57 (-201) 39(1W) -43(-121) 

(c) 130 (126) -21 (-26) -57 (-201) 38 (108) -40 (-119) 

(a) 103 (101) -15 (-20) -51 (-192) 29 (98) -36 (-114) 
1 @) 99 (98) -19(-23) -55 (-197) 36(105) -38 (-115) 

(c) 102 (100) -16 (-21) -55 (-198) 35 (104) -37 (-114) 

Table S. Displacema of nearest-neighbour Pd alom (Elalive to their rigid-lattice pos'tio?~.) 
for mupling of the firs1 excited state to E modes in percent of the lattice constant (U = 3.88 A). 
Af2 displacemenrs for atoms on the let-agonal axis, AI1 diSplaCements for atoms on a plane 
perpendicular to the tet-agonal axis (see figure I), Vace of the double-force tensor. Values in 
brackets calculated with pair potential I. the others with pair potential 11. 

Al'/a[%I AZz/a (55) TrP (ev) 

p+ 0.54 (1.13) 2.46 (2.85) 9.99 (11.70) 
x+ 0.53 (1.14) 2.29 (2.68) 9.63 (11.33) 
p 0.49 (1.16) 138 (1.86) 7.81 (9.60) 
d 0.49 (1.17) 1.16 (1.68) 7.39 (9.25) 
t 0.49 (1.17) 1.06 (1.60) 7.19 (9.W) 

nearly degenerate states. 
To summarize this section, we have found that for the description of inelastic neutron 

scattering (INS) spectra of p, d and t in Pd the weak coupling picture has to be applied 
(see Klamt 1986, Stoneham 1975). This means that the excitation energies in the potential 
well of the fixed ground-state lattice configuration (Franck-Condon energies) do not give 
the correct peak positions in the neutron scattering specha On the other hand we find 
that the excitation energies to the fully relaxed excited states (position of the zero-phonon 
line) are very close to the Franck-Condon energies so that in practice this difference is 
absolutely irrelevant with r e w d  to the peak positions. The next question is whether the 
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Table 6. ( A ~ / u ) ~ :  Absolute valnes of displacements of nearenllei@bom Pd a t m s 4 i v e  
b their rigid lattice position) for wuphg of the BrSt excited state to T modes. (Alia), = 
f (All/u) + f (AI2/=) (All. Ai2 hom table 3, i.e. average displacement for E-mode coupling. 
(Al/u)g: displace-@ in the ground-state configuration. Values in b m k m  correspond m pair 
potential I. 

P+ If P d t 

( A m ,  (95) 1.24 (1.76) 1.16 (1.69) 0.80 (1.40) 0.72 (i.34) 0168 (1.32) 
mE (%) 1.18 (1.70) 1.12 (1.65) , 0.79 (1.39) 0.71 (1.34) 0.68 (131) 
W a ) ,  (a) 0.97 (1.54) 0.92 (1.50) 0.68 (1.32) 0.63 (129) 0.61 (1.27) 

Table 7. Chamtenstic energk (see table 4) for the second and third excited state ( E l  and 
E3 respectively) (a) god-s ta te  lattice wnfiguation 0) coupling to E modes. In brackets the 
values obtained in pair potential 1 are given. 

Ez”” @ AEF €3” EF A E ~  
0“) (mew (meV) (mew (mew (mew 

p (a) 280 (263) 35 (105) -57 (-145) 301 (281) 35 (105 ) -56 (-145) 
@) 262 (254) 57 (130) -64 (-148) 288 (267) 60 (137) -59 (-147) 

d (a) 185 (177) 31 (100) -47 (-129) 198 (187) 31 (100) -46 (-129) 
@) 175 (172) 46 (117) -51 (-131) 191 (179) 48 (122) -47 (-130) 

t (a) 145 (140) 29 (98) -42(-122) 155 (147) 29 (98) -41 (-122) 
@) 138 (137) 41 (111) -45 (-123) 150 (142) 43 (115) -42(-123) 

quite asymmeaic shape of the first INS peak in Pd (Rush et a1 1984) may be attributed to the 
Jahn-Teller effect of the first excited state. In a paper by Klamt (1987) the line shape of this 
INS peak could be very well described assuming a Jahn-Teller effect with dominant T-mode 
coupling (T-t Jahn-Teller effect) and a coupling constant of about 0.26. Our calculations, 
however, give dominant Bmode coupling. This means that we do not have the complicated 
vibronic spectra of the T-t Jahn-Teller system but simply shifted potential surfaces. The 
coupling constant on the other hand is of the right order of magnitude 0.28 (0.14). An 
explanation of the asymmetric line shape in terms of a Jahn-Teller effect is, nevertheless, 
doubtful in our opinion. 

Finally, in table 8 we compare the calculated excitation energies with the measured 
peak positions (information on line intensities requires the calculation of matrix elements, 
see Christodoulus and Gfflan 1991). The experimental data are obtained for PdHo.014 and 
PdDo.014 (Rush et a1 1984). 

In former papers (ElsLser et aI 1991b, 1992) the ab initio data for the hydrogen 
vibrations in the p-phase PdH were compared with the data obtained on PdH0.014 (Rush 
et a1 1984). A good agreement could be achieved by ascribing a small sfmcture in the 
INS spectra at 115 i 5 meV to an excitation. As shown in table 8, our present data 
as well as the ab initio data for Pd4H agree better with the INS spectra if we refrain from 
attributing an excitation to this small structure but consider it as statistical noise, in line 
with the interpretation of Rush et a1 1984 (however, not with their attribution of perturbed 
oscillator states without proper splitting of degeneracies due to cubic symmeIiy. see ElsLser 
eta1 1992). 
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l sb le  8. Exciwion energies to the first, second and third excited s a .  FC (Franck-Condon): 
excitation energy in the lattice configuration of the ground state, ZP (zero-phonon peak): energy 
difference between the excited state in the new equilibrium lattice cnnfiguraaon and the sound 
state, Exp: experimentaUy determined p z k  positions in the inelastic neuhon scattering spectra. 
The ab initio results for undistorted P&H at the equilibrium lattice constant (a = 3.94 A) 
(ElsXser et d 1991b) are marked PGH. Values in brackets obtained with pair potential I, the 
other with pair potential 11. 

1 peak Z W k  3 peak 
FC ZP Exp R ZP ExP FC ZP Exp 

P 88 83 69 .0 i  0.5 168 160 1 3 7 f 2  189 186 156*3 

6. Particle states localized at tetrahedral sites 

Calculations in the periodic particle potential of the rigid Pd lattice (a = 3.88 A), performed 
imposing periodic boundary conditions on the particle wavefunctions, show that for all 
hydrogen isotopes including the light ones (p+, a+) excited states exist in which the particle 
is mainly localized in the vicinity of the tetrahedral site. The lowest energies of such states 
as calculated using pair potential I for A+, p, d, t are shown in figure 6 together with 
the corresponding potential energy profile along the (1 11) direction, which is the direction 
joining the 0 and T site via the lowest saddle point SILL. For p, d, t the occupation 
probability at the T site is more than 99% (defined as the occupation probability within a 
sphere with a radius corresponding to the distance between the T site and &,I) .  For x+ 
and p+ the occupation probability at the T site is still larger than 95% although the energy 
levels are far above the saddle point Snl. This is a consequence of the fact that the passage 
through the saddle point is very narrow and the potential rises very steeply along other 
directions. The narrow passage in turn leads to high costs of transverse kinetic energy in 
the narrow passage due to the uncertainty relation. 

It is now self-suggesting to investigate self-localized T states. As usual, this is done 
requiring that the particle wavefunction vanishes at the surface of a sphere of sufficiently 
large radius around the T site. It turns out that the light particles (,U+, n') do not localize 
completely at a T site; there is always some energy gained as the radius of the sphere 
is increased further and further in the calculations. Nevertheless, it can be expected that 
excited states of p+ and I+ also exist and are localized mainly at the T site and which, 
furthermore, produce lattice distortions that are quite different from the ground-state lattice 
configuration. The energies of such states have not been determined for p+ and R+, 
however. From table 9, which gives the corresponding energies for the heavier isotopes, 
it is clear that they must lie above the ground state by considerably more than 200 meV. 
The energies characterizing the tetrahedd state of p, d, and t in (a) the rigid lattice and 
@) after self-localiiation are given in table 9. The energy difference between self-localized 
T and 0 states ranges from 303 (203) meV for the proton and 255 (164) meV for the 
triton. The values computed with pair potential I are given in brackets. We think that the 
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1.2 , 

r/o 

Figure 6. The lowest energies of states for n+, p. d, t for which the particle wavefunctions in 
the rigid Pd lattice are mainly localized in the vicinity of the tetrahedral site, represented in the 
energy versus displacement curve for Pd along (111) (calculated with pair potentid D. 

calculations with pair potential II (the other values) can describe these energy differences 
reasonably well since this potential gives a good description of the shape of the hydrogen 
potential at the 0 site as well as at the T site in particular at the lattice constant of PdH. A 
good description of the potential shape at T for that lattice parameter is important because 
then the distance to the nearest neighbours of the T site is approximately equal to the one 
obtained after self-localization of hydrogen at the T site (see below). Furthermore, pair 
potential II reproduces the ab initio energy differences between the minimum of the two 
wells at T and 0 as obtained for PdH, Pd4H (see figures 2 and 3) and at the Pd lattice 
constant (the ab initio value is approximately 320 meV (ElsZsser et al 1992) pair potential 
II gives 312 mev). An uncertainty comes in through the forces on the nearest-neighbour 
atoms since pair potential II has a sharp bend just above the corresponding distance (see 
figure 4). Therefore uncertainties in the interpolation of the force obtained at distances 
m a  (a = 3.88 A) and 0 . 5 ~  (nearest-neighbour distances at T and 0 in the unrelaxed Pd 
lattice) result in uncertainties in the forces at the relaxed positions and in the calculation 
of lattice relaxations. On the other hand the fact that the energy curves along (111) are 
well reproduced by V"(r) for different lattice parameters indicates that these uncertainties 
should not be serious. The nearest-neighbour atoms of p. d or t self-trapped at a T site 
are displaced by 1.86% (2.41%), 1.78% (2.34%) or 1.75% (2.31 %) of the lattice constant 
(a = 3.88 A). 

The energy differences between self-trapped T and 0 ground states are certainly too 
high to lead, at moderate temperatures, to a sizable equilibrium occupation of T sites by 
the hydrogen isotopes. However, these energies may have some relevance as they might 
be used to get a very cmde idea about the activation energies of particle hopping via an 
intermediate T site. 

Finally we want to discuss how significant the effects are which are introduced by the 
wavefunction dependence of the lattice relaxation. For this purpose calculations have been 
performed in which the extension of the particle wavefunction has been neglected in the 
determination of the lattice relaxation, i.e. in computing the forces via (64 or (8) hydrogen 
is treated as a classical particle located at the T site. If pair potential U is used in these 
calculations one obtains E" = lllmeV and AEfin = -277 meV and for the vibrational 
energies in the particle potential corresponding to the relaxed configuration created by the 
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Tnble 9. (a) Vibrational energy in the rigid Pd lattice of the lowest excited state centred at a T 
site (Erib measured from the minimum of the pokntial wen at the 0 site, E? measured from the 
potential minimum at the T site, total energy difference ET - Eo W e e n  the lowest tetrahedral 
state and the gmund sfafe O o c a l i  at the 0 site) as calculated in the rigid Pd lattice. (b) 
Vibmtional energy E$b (measured h m  the T-site minimum), change A P b  of the vibraticnal 
energywmparedwiththerigid-latticevalue,energyshiff AEmh ofthepotentialminimumatthe 
T site, deformation energy Edof and total self-trapping energy AE" for that lowest-lying state 
which is self-uapsd at the T site. Values in brackets w m p d  to pair poteotid 1. the others to 
pair potential 11. Mesh width used in calculating the particle wavefunction: 0.0647 A. Ab initio 
results for the ccoresponding states in PdH at the equilibrium lattice wnstant (a = 4.07 A) 
(EWiser et d 1991b) are marked by ( P a .  

EYib E;" AErib ~ ~ m h  Edd AEm ET-Eo 
(mev)' (meV) (mew (mew (mew (mew (meV) 

(a) 606.5 294 477 
(541.2) (277) (410) 

P 213 (Pd4H) 
@) 244 -50 -308 147 -212 303 

(a) 5222 210 431 
(207) (-70) (-479) (228) (-322) (203) 

(4595) (195) (371) 
d I50 (Pam 

@) 175 -35 -300 136 -199 27 I 

(a) 483.5 171 416 
(146) (-49) (-467) (214) (-303) (177) 

(423.1) (159) (352) 
t 123 (Pd4H) 

(b) 143 -28 -296 132 -192 255 
(119) (-40) (-462) (208) (-294) (164) 

point-like particle Etb = 252 meV @), E$b = 179 meV (d), and EYb = 146 meV (t) is 
found. A comparison with the corresponding entries in table 9 shows that the modifications 
in the vibrational energies due to the inclusion of wavefunction-dependent lattice relaxation 
in the calculation is only a few per cent. The effect on Ede' or AE"O is larger but in the 
sum AE"' + E M ,  which enters into the energy balance, the effect is again only of this 
order of magnitude. The same holds for AE"" (if calculated from the data given above 
one obtains -208 meV (p), -197 meV (d) and -191 meV (t) as well as for the energy 
difference ET - EO between the 'ground states' at the T and 0 site. 

7. Diffusion 

A careful treatment of quantum diffusion of hydrogen isotopes within the framework of 
Holstein's occurrence probability approach valid above approximately half of the Debye 
temperature (see, e.g., Klamt and Teichler 1986a, 1986, Emin et a1 1979, Sugimoto and 
Fukai 1980) requires the calculation of a few parameters among which the most important 
ones are the activation energies, which are needed to create the lowest so-called coincidence 
configurations, and the tunnelling matrix elements. It is not the aim of the present article 
to perform such calculations. In particular, the computation of tunnelling matrix elements 
would be rather difficult because these are quite small in Fcc metals. In this paper we 
only present the activation energies required in order to create ground-stateground-state 
coincidences. To obtain these quantities, we have performed a calculation imposing the 
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constraint that the particle wavefunction is equally distributed among two neighbouring 0 
sites. The values for the different hydrogen isotopes obtained with pair potential II (0 are for 
p+: 22 (66) meV, IT+: 20 (62) meV, p: 10 (48) meV, d 9 (46) meV and t: 8 (44) meV. The 
values derived with pair potential II are probably somewbat too small because, as already 
mentioned, it gives a too small value of trP. In both cases the activation energies are much 
smaller than the ones determined from measurements (data are available for temperatures 
above 130 K, for a collection of data see Fukai and Sugimoto 1985). This observation is 
not surprising because the tunneIling matrix elements for the ground-state coincidences and 
for the heavier hydrogen isotopes (p, d, t) are expected to be very small. On the other hand, 
such coincidences could be relevant for p+ and IT+. 

Very crude estimates for the activation energies required to generate higher coincidences 
may be obtained from the excitation energies to excited states plus roughly half of the total 
self-trapping energies of the state considered. Clearly a more adequate matment is required 
for a thorough discossion of the temperature dependence and the anomalous isotope effect 
found in the diffusivity of hydrogen isotopes in Pd (for a review, see Fukai and Sugimoto 
1985 and 1992). 

8. Conclusions 

Because of the development of better computers and more efficient computer algorithms it 
has become possible in the past few years to calculate ab initio the vibrational properties of 
hydrogen isotopes in metals. In spite of this great step, there are two shortcomings of the 
available ab initio methods. 

(i) The calculations, which are mostly based on the supercell method, are very time- 
consuming. As a result, only quite small supercells according to concentrated metal- 
hydrogen systems can be considered, whereas for many real materials, for instance Fe, 
the hydrogen solubility is low. Furthemore, the local structural distortion of the host lattice 
in the surroundings of H is mostly restricted by symmetry for small supercells, so that only 
the homogeneous volume relaxation due to hydrogen loading is taken into account. 

(ii) The wavefunction of the hydrogen isotope is considered as point-like. In reality, 
however, it is extended and depends both on the isotope mass and on the particle state, 
which has an influence on the forces on the host atoms and on the host-atom configuration 
and hence in turn on the potential surface of the particles. 

To cure these deficiencies, we step back from a pure ub initio calculation and represent 
the hydrogen-metal interaction by an effective pair potential which incorporates as much 
as possible the electronic degrees of freedom. In contrast to former work of other authors 
(see introduction), we thereby do not make use of experimental data (which anyway, are 
not available for many metals) but use almost exclusively ub initio data, nameIy the energy 
versus displacement curves and the forces exerted by the classical particles on the host atoms, 
which are calculated either directly or from the (ab initio determined) volume expansion 
upon loading of the host with hydrogen. 

As an application of the theory the properties of isolated hydrogen isotopes in Pd and 
Fe (see part II) are calculated with special emphasis on the influence of the local lattice 
distortions. In summarizing the main results obtained for Pd we divide the procedure 
of calculating the properties of self-trapped states into two steps which could have been 
performed one after the other. The two steps represent different degrees of complexity. 

In the first step we neglect the more delicate quantum aspects addressed in (ii) which 
are related to the wavefunction-dependent lattice relaxation. If this is done the first task is 
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to determine the displacements of the host atoms if a ‘point-like’ hydrogen atom is placed 
at a few selected interstitial sites at which the formation of self-localized particle states is 
likely. In Pd these are the octahedral (0) and tetrahedral (T) sites. This is within the range 
of ab initio calculations although it requires sufficiently large supercells and consequently 
a considerable amount of computer time. Given this fixed host lattice configuration, the 
potential surface for the hydrogen motion has to be determined. This is a much more 
demanding task which would require a large number of calculations for large supercells and 
to proceed in this way does not seem possible in the near future. In the present calculations 
the particle potential surface as well as the lattice relaxation have been determined with the 
help of our pair potential description of the particle-host interaction. It has been shown that 
in particular our pair potential II gives a very reliable description of the potential surfaces 
in a rigid Pd lattice and at several lattice constants for all energies which are relevant 
to the calculation of equilibrium properties. The advantage of pair potential I lies in the 
better description of the particle potential at higher energies which might become relevant 
in molecular-dynamics simulations. 

In the calculation of lattice relaxation it is essential that the pair potential gives reliable 
values for the forces exerted on neighbouring host atoms at the distances which become 
relevant at the relaxed configuration. As shown in the text, pair potential II seems to 
comply with these requirements very well. In the particle potential which is constructed 
as discussed above and which is held fixed independent of the mass of the hydrogen 
isotope or of the excitation state, the vibrational states of the various hydrogen isotopes 
are then to be determined. As discussed below, some of the quantities of interest are 
already very well reproduced in Pd by a calculation of this type. We therefore suggest 
an even more simplified version leading to essentially identical results, which might be 
carried out completely ab initio. In this simplified version the relaxed lattice configuration 
if hydrogen is placed at one of the selected sites has to be determined, whether ab initio 
or using a hydrogen-host pair potential, but instead of determining the hydrogen potential 
surface at this locally relaxed configuration the potential surface may be constructed for 
a homogeneously deformed host lattice which is chosen in such a way that the distances 
to the nearest-neighbour host atoms agree with the ones obtained in the locally relaxed 
configuration. In some cases the next-nearest-neighbour distances have to be adjusted as 
well which might require a reduction of the symmetry of the host lattice. We come to this 
point id part II of the paper (Rrimmel et al 1994). Since it is absolutely essential to take 
into account the lattice relaxation properly this is the minimum effort which is to be made in 
order to get meaningful results. The argument in favour of the simplified procedure comes 
from a comparison of the hydrogen vibrational energies in Pd as determined by the present 
calculation for the IocaUy relaxed configuration with the results obtained from ab initio 
calculations on small supercells and at lattice parameters fulfilling the above mentioned 
requirements (Els&ser et al 1991a, 1991b). 

The next step in the calculation has to include the dependence of the lattice relaxation on 
the particle wavefunction which in turn depends on the isotopic mass and on the vibrational 
state. This step is clearly out of the range of ab initio calculations. It tums out that if full 
account of the finite extension of the wavefunction is made, the vibrational energies of p, d, 
t change only slightly from the values which are calculated if the particle potential is held 
fixed and is taken as that obtained for a self-trapped ‘point-lie’ particle. For p, d, t the 
changes are typically of the order of several meV or several % with a tendency to increase as 
one goes to higher excited states. They become also larger for the light isotopes z+, p + .  An 
explicit comparison along these lines has been given in section 6 for the lowest vibrational 
state localized at a T site, implicit information in this respect on the states localized at 0 sites 



Self-trapped hydrogen states in metals I 7703 

is contained, for example, in the tables comparing E-mode with T-mode coupling and with 
energy levels determined in the ground-state configuration. Similarly the energy differences 
between the 'ground states' of the various hydrogen isotopes once self-trapped at T and once 
at 0 sites are very well recovered if the wavefunction dependence of lattice relaxation is 
entirely neglected. The influence of the wavefunction in this case is indeed particularly small 
due to a partial cancellation of effects. For instance, the sum of deformation energy and of 
the reduction in potential energy (lowering of the potential minima at T and 0) associated 
with self-trapping are nearly independent of the particle mass, whereas the dependence of 
the individual terms is significant. 

On the other hand quantities l i e  the displacements of nearest-neighbour atoms or the 
double-force tensor P are strongly influenced by the extension of the particle wavefunction, 
in particular if the light isotopes x+, p+ are included in the consideration. The isotope 
effect in these quantities is entirely due to the extension of the particle wavefunction. The 
same is true for the Jahn-Teller coupling energies of excited states as well as for the 
resulting anisotropy of the lattice displacements and of the double-force tensor in the static 
JahwTeller distorted configurations. The Jahn-Teller coupling has been determined to be 
dominant in lattice modes with E-syrnmefq with a coupling energy of a few meV (for p, d, 
t). The Jahn-Teller effect might be relevant to the interpretation of line shapes of inelastic 
neutron scattering spectra and might also become visible at elevated temperatures and in 
anisotropically strained samples. 

Pair potentials describing the hydrogen-metal interaction which are conshucted along 
the lines given in the present paper not only prove useful in the calculation of equilibrium 
properties of diluted metal-hydrogen systems but also provide a solid basis for the 
calculation of transport properties. In this respect they can be used either in order to 
calculate some basic quantities which enter into current theories of quantum diffusion (see 
seetion 7) or in quantum or classical molecular dynamic simulations. In both cases a large 
number of configurations has to be explored and ab initio methods can so far be employed 
only for refinements at a few particular configurations. 
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